новости  материалы  справочник  форум  гостевая  ссылки  
Новости
Материалы
  Логические подходы
  Нейронные сети
  Генетические алгоритмы
  Разное
  Публикации
  Алгоритмы
  Применение
Справочник
Форум
Гостевая книга
Ссылки
О сайте
 

Аксиоматический метод


Источник: http://www.isu.ru/~slava/do/disc/arithmet.htm
Курс: Дискретная математика


В теории, построенной в согласии с аксиоматическим методом, начинают с небольшого количества неопределяемых (первичных) понятий, которые по предположению удовлетворяют определенным аксиомам. Прочие понятия, изучаемые в теории, определяются через первичные, и из аксиом и определений выводятся теоремы. Развитие математической теории в таком стиле – это первый шаг по направлению к её формализации.

В этой части мы исследуем применение аксиоматического метода в арифметике. Мы используем термин "натуральные числа" в смысле, отличающемся от обычного – ноль мы тоже включаем в натуральные числа. Такое использование этого термина обычно для зарубежных математиков. Мы пишем "натуральные числа" только чтобы не писать каждый раз "целые неотрицательные числа".

Аксиомы натуральных чисел

Мы рассматриваем множество w объектов называемых натуральными числами. Одно из натуральных чисел называется нулём и обозначается 0 . Для любого натурального числа n одно из натуральных чисел называется следующим за числом n и обозначается n' .

Множество натуральных чисел таково, что удовлетворяет следующим аксиомам:

Аксиома 1. Для любого натурального числа n: n' 0.

Аксиома 2. Для любых натуральных чисел m и n: если m'=n', то m = n.

Аксиома 3. Пусть A является подмножеством множества w со следующими свойствами:

  1. 0 О A;
  2. для любого натурального числа n: если n О A, то n' О A.
Тогда A = w.

Эти аксиомы были введены Джузеппе Пеано в 1889 году.

Начальные задачи

Определения. 1 = 0', 2 = 1', 3 = 2', 4 = 3' .

В каждой из следующих задач получите данное утверждение из аксиом.

1.1 2 4.

см. Решение

1.2 n' n.

Решение. Рассмотрим множество A натуральных чисел n таких, что n' n. Наша цель – показать, что A = w, и мы сделаем это, используя аксиому 3. Сначала нам надо проверить, что 0 О A, то есть 0' 0. Это следует из аксиомы 1. Теперь возьмём любое натуральное число n и предположим, что n О A, то есть n' n. Нам надо вывести из этого предположения, что n'О A – это значит, что n" n'. Предположим, что n"= n'. Тогда, по аксиоме 2, n'= n, а это противоречит тому, что n' n.

Это доказательство, разумеется, "доказательство по индукции". Условия 1 и 2 аксиомы 3 являются "базисом" и "индуктивным шагом". Аксиома 3, которая служит для построения доказательств подобных этому, называется аксиомой индукции.

1.3 Если n 0, то существует натуральное число m такое, что n = m'.

1.4 Такое число m единственно.

Сложение

Чтобы определить сумму двух натуральных чисел, нам надо доказать корректность хорошо известного рекурсивного определения сложения (уравнения (1) ниже), то есть существование и единственность функции, удовлетворяющей этим уравнениям. Эти факты сформулированы здесь как задачи 1.7 и 1.8.

1.5 Существует функция f из натуральных чисел в натуральные числа такая, что

f(0) = 3,
f(n') = f (n)'.

1.6 Для любого m существует функция f из натуральных чисел в натуральные числа такая, что

f(0) = m,
f(n') = f(n)'.

1.7 Существует функция g из w ґ w в w такая, что

g(m, 0) = m,
g(m, n') = g(m, n).

1.8 Такая функция g единственна.

Определение 1 (Сумма). Для этой функции g число g(m, n) называется суммой m и n и обозначается m + n .

Так, для любых натуральных чисел m и n:
m + 0 = m,
m + n'= (m + n)'.
(1)

Корректность определения сложения была выведена из аксиом Пеано Лазло Кальмаром в 1929 году.

1.9 2 + 2 = 4.

1.10 n'= n + 1.

1.11 (k + m) + n = k + (m + n).

1.12 0 + n = n.

1.13 m'+ n = m + n'.

1.14 m + n = n + m.

1.15 Если k + m = k + n, то m = n.

Порядок

Определение 2 (Порядок). Мы пишем m Ј n , если для некоторого k: n = m + k.

1.16 0 Ј n.

см. Решение

1.17 n Ј n.

1.18 n Ј n'.

1.19 n Ј 0 тогда и только тогда, когда n = 0.

1.20 Если k Ј m и m Ј n, то k Ј n.

1.21 Если m Ј n и n Ј m, то m = n.

1.22 Если m Ј n и m n, то m'Ј n.

1.23 Для любых m и n: m Ј n или n Ј m.

1.24 k + m Ј k + n тогда и только тогда, когда m Ј n.

Определение 3. Мы пишем m < n , если m Ј n и m n.

1.25 2 < 4.

1.26 Любые натуральные числа m и n удовлетворяют по крайней мере одному из условий: m = n, m < n, n < m.

1.27 Любые натуральные числа m и n удовлетворяют в точности одному из этих условий.

1.28 Для любых натуральных чисел m и n, следующие условия эквивалентны:

  1. m Ј n,
  2. m < n или m = n,
  3. m < n'.

Наименьший элемент

Определение 4 (Наименьший элемент). Элемент n множества A натуральных чисел называется его наименьшим элементом, если для любого элемента m из A n Ј m.

1.29 Любое множество натуральных чисел имеет не более одного наименьшего элемента.

1.30 Для любого множества A натуральных чисел если 0 О A, то 0 является наименьшим элементом A.

1.31 Для любого множества A натуральных чисел если 1 О A, то A имеет наименьший элемент.

1.32 Любое непустое множество натуральных чисел имеет единственный наименьший элемент.

Умножение

1.33 Для любого m существует функция f из натуральных чисел в натуральные числа такая, что

f(0) = 0,
f(n + 1) = f(n) + m.

1.34 Существует функция g из w ґ w в w такая, что

g(m, 0) = 0,
g(m, n + 1) = g(m, n) + m.

1.35 Такая функция g единственна.

Определение 5 (Произведение). Для этой функции g число g(m, n) называется произведением m и n и обозначается m · n .

Так, для любых натуральных чисел m и n
m · 0 = 0,
m · (n + 1) = (m · n) + m.
(2)

1.36 2 · 2 = 4.

1.37 m · n = n · m.

1.38 m · n = 0 тогда и только тогда, когда m = 0 или n = 0.

Системы Пеано

Определение 6 (Система Пеано). Тройка <W, a, s> , где W – множество, a – элемент из W, а s – функция из W в W называется системой Пеано, если

  • для любого x О W: s(x) a,
  • для любых x, y О W: если s(x) = s(y), то x = y,
  • для любого подмножества A множества W если
    1. a О A и
    2. s(x) О A всегда, когда x О A,
    тогда A = W.

Используя это определение, аксиомы 1–3 можно сформулировать кратко, сказав, что тройка <w, 0, s0>, где s0 обозначает функцию следования, является системой Пеано.

1.39 Определите систему Пеано <W, a, s> такую, что W = w \ {0}.

1.40 Найдите изоморфизм между системой Пеано <w, 0, s0> и системой Пеано, построенной в решении задачи 1.39.

1.41 Для любой системы Пеано <W, a, s> существует изоморфизм между <w, 0, s0> и <W, a, s>.

Таким образом, любая система Пеано изоморфна системе натуральных чисел. В этом смысле аксиомы 1–3 дают полную характеризацию натуральных чисел.


Следующая часть: Логика высказываний