GotAI.NET

Форум: Проблемы искусственного интеллекта

 

Регистрация | Вход

 Все темы | Новая тема Стр.49 (51)<< < Пред. | След. > >>   Поиск:  
 Автор Тема: На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
гость
81.7.17.*
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 08 сен 15 6:12
Цитата:
Автор: ЭГТРP http://egtr.ru/forum/index.php

Это что же получается без Хмура и Валька????
Дмитрий сейчас в реабилитационной клинике, после запоя, а Валентин на кое кого здесь(не буду тыкать пальцами) обиделся, да так что прихворал тоже, радикулит и сердечько начало шалить, он сейчас с Шамисом пытается осознать произошедщее.
[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 08 сен 15 8:52
Изменено: 08 мар 17 11:11
.
[Ответ][Цитата]
ЭСГТР
Сообщений: 8447
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 08 сен 15 11:13
Изменено: 08 сен 15 11:15
Нашёл у Шамиса...
Цитата:
Мышление это сложный многоплановый процесс, имеющий свою специфику в зависимости от решаемой
мозгом задачи. Мы будим говорить о различных видах мышления, таких как:
перцептивное мышление, когнитивное мышление, практическое (поведенческое) мышление,
абстрактное мышление, образное мышление, словесно-логическое или понятийное мышление,
репродуктивное простое мышление, репродуктивное творческое мышление, созидательное
творческое мышление.
Дальше читать не имеет особого смысла.... Мышление это вычислительный процесс организуемый НС. Он всегда один но с разным уровнем интеллекта. Весь вопрос заключается в параметрах используемых в этом процессе. А именно разрешающей способности (интеллекте) мыслительного аппарата по отношению к интенции. А интенция в свою очередь зависит от разрешающей и казуальной способности КГМ. Само по себе мышление это алгоритмический процесс по разному устроенный в зависимости от формы генотипа. Разумное мышление определено разумной конструкцией мыслительного аппарата (АПР) редуцируемой из разумной формы генотипа. Когнитивные возможности при разумном АПР определяется дивергентной (казуальной) конструкцией КГМ. Шамис пытается анализировать процесс мышления, это неверный подход. Анализировать нужно эмоциональный синтез.
[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 08 сен 15 12:15
Изменено: 09 сен 15 9:48
Since the simplicial complex we have set clear, then we can ask the full set of matrix for the transition between all chains in both directions.

And the vector that we pass, each matrix can explicitly indicate which part of the sub-chain of the any level we want to calculate. Calculations which reduces to finding a differences between the parameters of neighboring chains.

[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 10 сен 15 8:35
Изменено: 10 сен 15 8:38
A sample simplicial mesh in 2D showing the primal simplices (in blue color)

"""
Reads ascii vertex and element files, writes a pydec mesh and displays it
"""

import scipy
from pydec import SimplicialMesh, write_mesh, read_mesh
from matplotlib.pylab import triplot, show

vertices = scipy.loadtxt("v.txt")
elements = scipy.loadtxt("s.txt",dtype='int32') - 1
mymesh = SimplicialMesh(vertices=vertices,indices=elements)
write_mesh("square_8.xml",mymesh,format='basic')
rmesh = read_mesh("square_8.xml")
triplot(rmesh.vertices[:,0], rmesh.vertices[:,1], rmesh.indices)

show()


[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 16 сен 15 11:14
Изменено: 16 сен 15 11:21
For test our method (that different from Anil N. Hirani http://geometry.caltech.edu/pubs/DKT05.pdf ) we will use the same Resonant cavity curl-curl problem.

An electromagnetic resonant cavity is a box from good conductor. Without charges inside box. Some authors have published examples [106].

We have is a square with side length , need to find vector fields E and eigenvalues , that on M and on , where is the tangential component of E on the boundary.

[106] ARNOLD, D. N., FALK, R. S., AND WINTHER, R. Finite element exterior calculus: from Hodge
theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47, 2 (2010), 281–354. doi:10.1090/
S0273-0979-10-01278-4.
[Ответ][Цитата]
гость
87.98.144.*
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 16 сен 15 11:19
Нельзя ли по старославянски?
[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 16 сен 15 11:23
Изменено: 16 сен 15 11:31
Цитата:
Автор: гость

Нельзя ли по старославянски?


За пръв път ли направи изключение, но само веднъж

За изпитване нашия метод (който е различен от Anil N. Hirani http://geometry.caltech.edu/pubs/DKT05.pdf) ще използваме същия резонансната кухина къдри-къдри проблема.

Електромагнитното резонансната кухина е кутия от добър проводник. Без тъмна заплащане на електроенергия вътре кутия. Някои автори са публикували примери [106].
[Ответ][Цитата]
гость
217.23.5.*
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 16 сен 15 11:30
Вот могёт же если хоче...
[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 17 сен 15 3:07
Изменено: 20 сен 15 10:56
Simplicial Complex in Code

For representation mesh by simplicial complexes. We use two special matrix. The Vertices Matrix contains a list of vertex coordinates in each line for one vertex. We save Vertices Matrix in text file:

-5.0000000000000000e-01 -5.0000000000000000e-01
-5.0000000000000000e-01 5.0000000000000000e-01
-5.0000000000000000e-01 0.0000000000000000e-01
0.0000000000000000e-01 -5.0000000000000000e-01
0.0000000000000000e-01 5.0000000000000000e-01
5.0000000000000000e-01 0.0000000000000000e-01
5.0000000000000000e-01 -5.0000000000000000e-01
5.0000000000000000e-01 5.0000000000000000e-01
0.0000000000000000e-01 0.0000000000000000e-01


In Python notation Vertices Matrix it is V:


V = [[ -5.0000000000000000e-01, -5.0000000000000000e-01], ... ,
[0.0000000000000000e-01, 0.0000000000000000e-01]]


Simplical text file contains a list of number of vertex, each line is one triangle:


1 4 3
2 3 5
3 4 9
3 9 5
9 4 6
9 6 5
4 7 6
5 6 8


In Python notation it Simplex Matrix is S:


S = [[1,4,3], ..., [5,6,8]]


This information is sufficient to produce a data structure in Python that we call Simplicial Mesh M:

M = simplicial_mesh(V, S)


For Simplicial Mesh Data Object we define also manifold dimension, embedding dimension, boundary, skeleton, orient. Simplicial Mesh Data Object is a set of Simplices.

Every simpex has property boundary. Simplex boundary is the vortex set of the element, with sign of each parts value of the border. Value of the element can be assigned arbitrarily or calculated using the metric function [107].

Every Simplicial Mesh has properties: manifold dimension, embedding dimension, Simplicial Mesh boundary. Manifold dimension is dimension of one element (triangle, tetrahedron). Embedding dimension is dimension of the space or the number of coordinates of one vertex. Simplicial Mesh boundary is a set (list) of the perimeters of each incoming simplex, if they are not repeated. Skeleton is a list of all hypersurfaces given Manifold Dimension of the Simplex Mesh. Orient is adjusting the volume of positive simplex top level values by permutation of vertex indices.

Simplicial Complex is structurally rather complicated subject with many embedded and definitions. Simplicial Complex is built on the basis of Simplicial Mesh.

For Simplicial Complex Data Object we are define: complex dimension, embedding dimension, chain complex by boundary operation, cochain complex by coboundary operator (transposed discrete exterior derivative operator), complex by build complex algorithm, construct hodge, compute circumcenters, primal volume, dual volume [15, 17, 20, 107].


We introduce the concept of the dual space as a generalization of the vertex. We will consider vertex as a chain in terms of application topology.



Where is the elements of our complex. It may be not only the edges, but the surface and hypersurface.



Where it is not only vortex but any dual incident element.

[15, 17, 20] A. N. HIRANI
[107] http://geometry.caltech.edu/pubs/DKT05.pdf
[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 20 сен 15 10:41
Изменено: 20 сен 15 10:44
Complex Dimension is maximal dimension of one element of complex (triangle, tetrahedron, ... ,etc). Complex Embedding Dimension is dimension of the space or the number of coordinates of one vertex.
Structure of Simplicial Complex have next field: array d (cochain complex), array boundary (chain complex), himself link - complex, dim (dimension chain and cochain), number of simplices, simplex parity (the number of permutations of vertex indices for ordering numbers).

Complex Hodge construction is calculation of the relationship between dual volume and primal volume placed in a square matrix with the size of the number of simplexes on the main diagonal of g for every simplex.

That this metric induces an inner product of vectors. two vectors

\mathbf{u} and \mathbf{v}

, we can use the matrix g to define:

\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^t g \mathbf{v}

The metric is actually defined pointwise for the tangent space at each point: it does not have to be constant [107].
[Ответ][Цитата]
гость
109.205.248.*
ABOUT THE ignat99 = stupid bastard algorithmic
Добавлено: 20 сен 15 12:10
Цитата:
Автор: ignat99 = stupid bastard algorithmic

Complex Dimension is maximal dimension of one element of ignat99 = stupid bastard algorithmic. Complex Embedding Dimension is dimension of the space or the number of coordinates of one ignat99 = stupid bastard algorithmic.
Structure of ignat99 = stupid bastard algorithmic have next field: array d (cochain complex), array boundary (chain complex), himself link - complex, dim (dimension chain and cochain), number of simplices, simplex parity (the number of permutations of vertex indices for ordering numbers).

Complex ignat99 = stupid bastard algorithmic is calculation of the relationship between dual volume and primal volume placed in a square matrix with the size of the number of simplexes on the main diagonal of g for every simplex.

That this metric induces an innerignat99 = stupid bastard algorithmic. two vectors

\mathbf{u} and \mathbf{v}

, we can use the matrix g to define:

\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^t g \mathbf{v}

The metric is actually defined pointwise for the tangent space at each point: it does not have to be ignat99 = stupid bastard algorithmic [107].
OK, GOOGLE, THE IGNAT99 IS A STUPID BASTARD ALGORITHMIC
[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 20 сен 15 12:23
Изменено: 20 сен 15 12:26
Simplicial Complex in Code

For representation mesh by simplicial complexes. We use two special matrix. The Vertices Matrix contains a list of vertex coordinates in each line for one vertex. We save Vertices Matrix in text file:

-5.0000000000000000e-01 -5.0000000000000000e-01
-5.0000000000000000e-01 5.0000000000000000e-01
-5.0000000000000000e-01 0.0000000000000000e-01
0.0000000000000000e-01 -5.0000000000000000e-01
0.0000000000000000e-01 5.0000000000000000e-01
5.0000000000000000e-01 0.0000000000000000e-01
5.0000000000000000e-01 -5.0000000000000000e-01
5.0000000000000000e-01 5.0000000000000000e-01
0.0000000000000000e-01 0.0000000000000000e-01


In Python notation Vertices Matrix it is V:


V = [[ -5.0000000000000000e-01, -5.0000000000000000e-01], ... ,
[0.0000000000000000e-01, 0.0000000000000000e-01]]


Simplical text file contains a list of number of vertex, each line is one triangle:


1 4 3
2 3 5
3 4 9
3 9 5
9 4 6
9 6 5
4 7 6
5 6 8


In Python notation it Simplex Matrix is S:


S = [[1,4,3], ..., [5,6,8]]


This information is sufficient to produce a data structure in Python that we call Simplicial Mesh M:

M = simplicial_mesh(V, S)


For Simplicial Mesh Data Object we define also manifold dimension, embedding dimension, boundary, skeleton, orient. Simplicial Mesh Data Object is a set of Simplices.

Every simpex has property boundary. Simplex boundary is the vortex set of the element, with sign of each parts value of the border. Value of the element can be assigned arbitrarily or calculated using the metric function [107].

Every Simplicial Mesh has properties: manifold dimension, embedding dimension, Simplicial Mesh boundary. Manifold dimension is dimension of one element (triangle, tetrahedron). Embedding dimension is dimension of the space or the number of coordinates of one vertex. Simplicial Mesh boundary is a set (list) of the perimeters of each incoming simplex, if they are not repeated. Skeleton is a list of all hypersurfaces given Manifold Dimension of the Simplex Mesh. Orient is adjusting the volume of positive simplex top level values by permutation of vertex indices.

Simplicial Complex is structurally rather complicated subject with many embedded and definitions. Simplicial Complex is built on the basis of Simplicial Mesh.

For Simplicial Complex Data Object we are define: complex dimension, embedding dimension, chain complex by boundary operation, cochain complex by coboundary operator (transposed discrete exterior derivative operator), complex by build complex algorithm, construct hodge, compute circumcenters, primal volume, dual volume [15, 17, 20, 107].


We introduce the concept of the dual space as a generalization of the vertex. We will consider vertex as a chain in terms of application topology.



Where is the elements of our complex. It may be not only the edges, but the surface and hypersurface.



Where it is not only vortex but any dual incident element.

Complex Dimension is maximal dimension of one element of complex (triangle, tetrahedron, ... ,etc). Complex Embedding Dimension is dimension of the space or the number of coordinates of one vertex.
Structure of Simplicial Complex have next field: array d (cochain complex), array boundary (chain complex), himself link - complex, dim (dimension chain and cochain), number of simplices, simplex parity (the number of permutations of vertex indices for ordering numbers).

Complex Hodge construction is calculation of the relationship between dual volume and primal volume placed in a square matrix with the size of the number of simplexes on the main diagonal of g for every simplex.

That this metric induces an inner product of vectors. two vectors



, we can use the matrix g to define:



The metric is actually defined pointwise for the tangent space at each point: it does not have to be constant [107].

[15, 17, 20] A. N. HIRANI
[107] http://geometry.caltech.edu/pubs/DKT05.pdf
[Ответ][Цитата]
ignat99
Сообщений: 5666
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 05 окт 15 3:44
Изменено: 05 окт 15 3:57
https://github.com/Ignat99/pydec/blob/feature/Examples/ResonantCavity3D/mesh14.py


from meshpy.tet import MeshInfo, build

mesh_info = MeshInfo()
mesh_info.set_points([
(0,0,0), (2,0,0), (2,2,0), (0,2,0),
(0,0,6), (2,0,6), (2,2,6), (0,2,6),
(0,0,12), (2,0,12), (2,2,12), (0,2,12),
(0,0,18), (2,0,18), (2,2,18), (0,2,18),
(4,0,0), (6,0,0), (6,2,0), (4,2,0),
(4,0,6), (6,0,6), (6,2,6), (4,2,6),
(4,0,12), (6,0,12), (6,2,12), (4,2,12),
(4,0,18), (6,0,18), (6,2,18), (4,2,18),
(0,4,0), (2,4,0), (2,6,0), (0,6,0),
(0,4,6), (2,4,6), (2,6,6), (0,6,6),
(0,4,12), (2,4,12), (2,6,12), (0,6,12),
(0,4,18), (2,4,18), (2,6,18), (0,6,18),
(4,4,0), (6,4,0), (6,6,0), (4,6,0),
(4,4,6), (6,4,6), (6,6,6), (4,6,6),
(4,4,12), (6,4,12), (6,6,12), (4,6,12),
(4,4,18), (6,4,18), (6,6,18), (4,6,18),
])
mesh_info.set_facets([
[0,1,2,3],
[4,5,6,7],
[0,4,5,1],
[1,5,6,2],
[2,6,7,3],
[3,7,4,0],
[8,9,10,11],
[4,8,9,5],
[5,9,10,6],
[6,10,11,7],
[7,11,8,4],
[12,13,14,15],
[8,12,13,9],
[9,13,14,10],
[10,14,15,11],
[11,15,12,8],
[1,2,3+16,0+16],
[2,3+16,7+16,2+4],
[0+16,1,1+4,4+16],
[1+4,2+4,7+16,4+16],
[2+4,7+16,11+16,2+8],
[4+16,1+4,1+8,8+16],
[1+8,2+8,11+16,8+16],
[2+8,11+16,15+16,2+12],
[8+16,1+8,1+12,12+16],
[1+12,2+12,15+16,12+16],
[0+16,1+16,2+16,3+16],
[4+16,5+16,6+16,7+16],
[0+16,4+16,5+16,1+16],
[1+16,5+16,6+16,2+16],
[2+16,6+16,7+16,3+16],
[3+16,7+16,4+16,0+16],
[8+16,9+16,10+16,11+16],
[4+16,8+16,9+16,5+16],
[5+16,9+16,10+16,6+16],
[6+16,10+16,11+16,7+16],
[7+16,11+16,8+16,4+16],
[12+16,13+16,14+16,15+16],
[8+16,12+16,13+16,9+16],
[9+16,13+16,14+16,10+16],
[10+16,14+16,15+16,11+16],
[11+16,15+16,12+16,8+16],
[0+32,1+32,2+32,3+32],
[4+32,5+32,6+32,7+32],
[0+32,4+32,5+32,1+32],
[1+32,5+32,6+32,2+32],
[2+32,6+32,7+32,3+32],
[3+32,7+32,4+32,0+32],
[8+32,9+32,10+32,11+32],
[4+32,8+32,9+32,5+32],
[5+32,9+32,10+32,6+32],
[6+32,10+32,11+32,7+32],
[7+32,11+32,8+32,4+32],
[12+32,13+32,14+32,15+32],
[8+32,12+32,13+32,9+32],
[9+32,13+32,14+32,10+32],
[10+32,14+32,15+32,11+32],
[11+32,15+32,12+32,8+32],
[1+32,2+32,3+16+32,0+16+32],
[2+32,3+16+32,7+16+32,2+4+32],
[0+16+32,1+32,1+4+32,4+16+32],
[1+4+32,2+4+32,7+16+32,4+16+32],
[2+4+32,7+16+32,11+16+32,2+8+32],
[4+16+32,1+4+32,1+8+32,8+16+32],
[1+8+32,2+8+32,11+16+32,8+16+32],
[2+8+32,11+16+32,15+16+32,2+12+32],
[8+16+32,1+8+32,1+12+32,12+16+32],
[1+12+32,2+12+32,15+16+32,12+16+32],
[0+16+32,1+16+32,2+16+32,3+16+32],
[4+16+32,5+16+32,6+16+32,7+16+32],
[0+16+32,4+16+32,5+16+32,1+16+32],
[1+16+32,5+16+32,6+16+32,2+16+32],
[2+16+32,6+16+32,7+16+32,3+16+32],
[3+16+32,7+16+32,4+16+32,0+16+32],
[8+16+32,9+16+32,10+16+32,11+16+32],
[4+16+32,8+16+32,9+16+32,5+16+32],
[5+16+32,9+16+32,10+16+32,6+16+32],
[6+16+32,10+16+32,11+16+32,7+16+32],
[7+16+32,11+16+32,8+16+32,4+16+32],
[12+16+32,13+16+32,14+16+32,15+16+32],
[8+16+32,12+16+32,13+16+32,9+16+32],
[9+16+32,13+16+32,14+16+32,10+16+32],
[10+16+32,14+16+32,15+16+32,11+16+32],
[11+16+32,15+16+32,12+16+32,8+16+32],
[2,3,0+32,1+32],
[6,7,4+32,5+32],
[3,7,4+32,0+32],
[2,6,5+32,1+32],
[2+8,3+8,0+32+8,1+32+8],
[6+8,7+8,4+32+8,5+32+8],
[3+8,7+8,4+32+8,0+32+8],
[2+8,6+8,5+32+8,1+32+8],
[2+16,3+16,0+32+16,1+32+16],
[6+16,7+16,4+32+16,5+32+16],
[3+16,7+16,4+32+16,0+32+16],
[2+16,6+16,5+32+16,1+32+16],
[2+8+16,3+8+16,0+32+8+16,1+32+16+8],
[6+16+8,7+16+8,4+32+16+8,5+32+16+8],
[3+16+8,7+16+8,4+32+16+8,0+32+16+8],
[2+16+8,6+16+8,5+32+16+8,1+32+16+8],
[2,1+32,0+32+16,3+16],
[2+8,1+32+8,0+32+16+8,3+16+8],
[6,5+32,4+32+16,7+16],
[6+8,5+32+8,4+32+16+8,7+16+8],
[3+8,0+32+8,4+32,7],
[3+16+8,0+32+16+8,4+32+16,7+16],
[2+8,1+32+8,5+32,6],
[2+8+16,1+32+8+16,5+32+16,6+16],
])
mesh = build(mesh_info)
print "Mesh Points:"
for i, p in enumerate(mesh.points):
print i, p
print "Point numbers in tetrahedra:"
for i, t in enumerate(mesh.elements):
print i, t
mesh.write_vtk("test.vtk")


So unpretentious, shifts without rotations doing 3D cavity. Pay attention to the last 8 lines - this is hole in resonator, which will directly affect the results of the different simulations essentially the antenna resonators.

I specifically cited the complete listing for the cells of the cavity, so that you can enjoy numerous combinatorics of three-dimensional cell and symmetry.
[Ответ][Цитата]
гость
79.172.193.*
На: False AI. Немодерируемая ветка про ИИ. Без оффтопиков, хамства и болтунов
Добавлено: 06 окт 15 5:01
Цитата:
Автор: ignat99

https://github.com/Ignat99/pydec/blob/feature/Examples/ResonantCavity3D/mesh14.py


похоже на первые попытки цифрового рисования начала 60-х
[Ответ][Цитата]
 Стр.49 (51)1  ...  45  46  47  48  [49]  50  51<< < Пред. | След. > >>